
140 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 31, NO. 1, FEBRUARY 2001

REFERENCES

[1] M. Sugeno, “On stability of fuzzy systems expressed by fuzzy rules with
singleton consequents,”IEEE Trans. Fuzzy Syst., vol. 7, pp. 201–224,
Apr. 1999.

[2] E. H. Mamdani, “Applications of fuzzy algorithms for control of simple
dynamic plant,”Proc. Inst. Electr. Eng., vol. 121, no. 2, pp. 1585–1588,
1974.

[3] T. Terano, K. Asai, and M. Sugeno, Eds.,Applied Fuzzy Systems. New
York: Academic, 1994.

[4] R. Palm, D. Driankov, and H. Hellendoorn,Model Based Fuzzy Con-
trol. New York: Springer-Verlag, 1996.

[5] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its ap-
plications to modeling and control,”IEEE Trans. Syst., Man, Cybern.,
vol. SMC-15, pp. 116–132, 1985.

[6] , “Stability analysis and design of fuzzy control systems,”Fuzzy
Sets Syst., vol. 45, pp. 136–156, 1992.

[7] K. Tanaka,A Theory of Advanced Fuzzy Control: Kyuoritsu , 1994.
[8] K. Tanaka and M. Sano, “A robust stabilization problem of fuzzy control

systems and its application to backing up control of a truck-trailer,”IEEE
Trans. Fuzzy Syst., vol. 2, pp. 119–134, May 1994.

[9] H. O. Wang, K. Tanaka, and M. F. Griffin, “An approach to fuzzy control
of nonlinear systems: Stability and design issues,”IEEE Trans. Fuzzy
Syst., vol. 4, pp. 14–23, Feb. 1996.

[10] K. Tanaka and T. Kosaki, “Design of a stable fuzzy controller for an
articulated vehicle,”IEEE Trans. Syst., Man, Cybern. B, vol. 27, June
1997.

[11] K. Tanaka, T. Ikeda, and H. O. Wang, “Fuzzy regulators and fuzzy
observers: Relaxed stability conditions and LMI-based designs,”IEEE
Trans. Fuzzy Syst., vol. 6, pp. 250–265, May 1998.

[12] , “Robust stabilization of a class of uncertain nonlinear systems via
fuzzy control: Quadratic stabilizability, H1 control theory, and linear
matrix inequalities,”IEEE Trans. Fuzzy Syst., vol. 4, pp. 1–13, Feb.
1996.

[13] H. Lam, F. Leung, and P. Tam, “Stable and robust fuzzy control for non-
linear systems based on a grid-point approach,” inProc. IEEE Int. Conf.
Fuzzy Systems, Barcelona, Spain, 1997, pp. 88–92.
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Robust Adaptive Fuzzy-Neural Control of Nonlinear
Dynamical Systems Using Generalized Projection Update

Law and Variable Structure Controller

Wei-Yen Wang, Yih-Guang Leu, and Chen-Chien Hsu

Abstract—In this paper, a robust adaptive fuzzy-neural control scheme
for nonlinear dynamical systems is proposed to attenuate the effects caused
by unmodeled dynamics, disturbance, and modeling errors. A generalized
projection update law, which generalizes the projection algorithm modifi-
cation and the switching- adaptive law, is used to tune the adjustable pa-
rameters for preventing parameter drift and confining states of the system
to the specified regions. Moreover, a variable structure control method is
incorporated into the control law so that the derived controller is robust
with respect to unmodeled dynamics, disturbances, and modeling errors.
To demonstrate the effectiveness of the proposed method, several examples
are illustrated in this paper.

Index Terms—Fuzzy-neural approximator, generalized projection
update law, nonlinear systems, variable structure control.

I. INTRODUCTION

Fuzzy set has received much attention since its introduction by
Zadeh. Over the past decade, fuzzy logic has been successfully
applied to many control problems [1]–[3]. Recently, neural networks
have also been applied to several control problems [4]–[7] with
satisfactory results. Because both the neural network and fuzzy logic
are universal approximators [8], [9], much research [10]–[12] have
been conducted to derive various fuzzy-neural controllers to obtain
better control performance. Based on the established fuzzy-neural
control technologies, various adaptive fuzzy-neural control schemes
have been systematically developed, by which the stability of the

Manuscript received December 16, 1999; revised April 6, 2000; August 21,
2000. This work was supported by the National Science Council of Taiwan,
R.O.C., under Grants NSC 89-2213-E-031-007 and NSC 89-2213-E-129-004.
This paper was recommended by Associate Editor T. Kirubarajan.

W.-Y. Wang is with the Department of Electronic Engineering, Fu-Jen
Catholic University, 24205 Taipei, Taiwan (e-mail: wayne@ee.fju.edu.tw).

Y.-G. Leu is with the Department of Electronic Engineering, Hwa-Hsia Col-
lege, Taipei, Taiwan, R.O.C. (e-mail: leuyk@cc.hwh.edu.tw).

C.-C. Hsu is with the Department of Electronic Engineering, St. John’s
and St. Mary’s Institute of Technology, Taipei, Taiwan, R.O.C. (e-mail:
jameshsu@mail.sjsmit.edu.tw).

Publisher Item Identifier S 1083-4419(01)00083-2.

1083–4419/01$10.00 © 2001 IEEE

Authorized licensed use limited to: Tamkang Univ.. Downloaded on March 28,2023 at 03:29:12 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 31, NO. 1, FEBRUARY 2001 141

closed-loop system can be guaranteed by theoretical analyses [1], [2],
[4], [13]–[15], [22]. Among these approaches, the adaptive tracking
control method with a radial basis function neural network (RBFNN)
[13] is proposed for nonlinear systems to adaptively compensate the
nonlinearities of the systems. The indirect and direct adaptive control
schemes using fuzzy systems and neural networks for nonlinear
systems have also been shown in [14] to provide design algorithms for
stable controllers. In addition, control systems based on a fuzzy-neural
control scheme are augmented with the variable structure control [15],
[16] to ensure global stability and robustness to disturbances. With
the use of the adaptive fuzzy-neural control and the variable structure
control [17], two objectives can be achieved. First, the nonlinearities
of the systems are effectively compensated. Secondly, the stability and
robustness of the system can be verified.

In [11], an adaptive fuzzy-neural controller was developed for a non-
linear dynamical system. Unfortunately, the effect of unmodeled dy-
namics, disturbances, and modeling errors associated with the non-
linear system by using the fuzzy-neural model was not discussed. It
is well known that for adaptive controllers, the unmodeled dynamics,
disturbances, and modeling errors may lead to parameter drift and even
instability problems [4], [15], [16], [18]. To attenuate the effect caused
by the unmodeled dynamics, disturbance, and modeling errors, several
adaptive fuzzy-neural control schemes have been proposed [22], [25].
However, the magnitude of the derived control input is generally too
large to apply in a practical design. Thus, further improvement for the
design algorithm is required, not only to attenuate the effects caused by
the unmodeled dynamics, disturbances, and modeling errors, but also
to reduce the magnitude of the control input demanded by practical ap-
plications.

To solve the aforementioned problems, a robust adaptive fuzzy-
neural control scheme, which incorporates a generalized projection up-
date law and a variable structure control method, is developed in this
paper. The derived update law, which generalizes the projection al-
gorithm modification and the switching-� adaptive law [18], is used
to tune the adjustable parameters for preventing parameter drift and
confining states of the systems into the specified regions. The variable
structure control method is incorporated into the proposed design algo-
rithm to derive the control law. As a result, the overall system by using
the adaptive fuzzy-neural controller is robust with respect to unmod-
eled dynamics, disturbances, and modeling errors. Compared with the
adaptive control schemes reported in [22], [25], the design algorithm
of the proposed approach not only attenuates the effects caused by the
unmodeled dynamics, modeling errors, and disturbances, but also re-
duces the magnitude of the control input which is generally appreciated
in designing a controller for practical applications.

This paper is so arranged that Section II describes the preliminaries
required to derive the robust adaptive fuzzy-neural control scheme.
Section III introduces the proposed generalized projection update law
and the robust adaptive fuzzy-neural control scheme. Several examples
are illustrated in Section IV. Conclusions are drawn in Section V.

II. PRELIMINARIES

Consider thenth-order nonlinear dynamical system of the form

_xn = f(x) + g(x)u+ dd; y = x1 (1)

or equivalently of the form

x(n) = F (x; u) + dd; y = x (2)

wherex = [x; _x; � � � ; x(n�1)]T = [x1; x2; � � � ; xn]
T 2 Rn is the

vector of states which are assumed to be measurable, and
u 2 R andy 2 R control input and system

output, respectively;

dd bounded external distur-
bance;

f(x) andg(x) nonlinear functions;
g(x) chosen strictly positive;
F (x; u) = f(x) + g(x)u: Rn+1 ! R smooth mapping defined

on an open set ofRn+1.
It is assumed that there exists a solution for (1) and that the order of the
nonlinear system (1) is known. Taking the Taylor series expansion of
the nonlinear system (2) at[xT0 ; uo]

T , we have

_xn = F (x0; uo) + a
T
x� + bu� + dh + dd (3)

wheredh is for high order terms,xo = [xo1; xo2; � � � ; xon]
T and

uo are nominal states and nominal input, respectively,u� = u � uo,
x� = x � xo = [x�1; x�2; � � � ; x�n]

T , b = @F=@uj(x ; u ), and
a = [a1; a2; � � � ; an]

T = [@F=@x1j(x ; u ), @F=@x2j(x ; u ); � � �,
@F=@xnj(x ; u )]

T . If the high order termdh and the disturbancedd
are neglected, then a linearization form of the nonlinear system can be
written as

_xn �= F (x0; uo) + a
T
x� + bu�: (4)

However, theF (x; u) of (2) is generally unknown. Thus, the
right-hand side of (4), i.e.,F (x0; uo), a, andb are approximated by
F̂ (x0; uo), â, andb̂, respectively, from the outputs of the fuzzy-neural
approximator [11]. That is, the right-hand side of (4) can be approxi-
mated by using the fuzzy-neural linear approximator as

_xn �= F̂ (x0; uo) + â
T
x� + b̂u�

=wT ���0 +w
T [���1; ���2; � � � ; ���n]x� +w

T���n+1u� (5)

where
���k = [p1k; p

2
k; � � � ; p

h
k ]
T ;

k = 0; 1; � � � ; n + 1;
wT = [w1; w2; � � � ; wh].

wi =

n+1

j=1

�A (xoj)

h

i=1

n+1

j=1

�A (xoj)

; i = 1; 2; � � � ; h (6)

p
T = [p0; p1; � � � ; pn+1]

=wT [���0; ���1; � � � ; ���n+1] = w
T
�: (7)

h is the number of total rules,pi are the outputs of the fuzzy-neural
linear approximator, and� = [���0; ���1; � � � ; ���n+1] is an adjustable
matrix. In order to derive the control law for the nonlinear system (1),
several assumptions and lemmas need to be given first.

Assumption 1 [23]: Let x0 anduo belong to compact setsUx and
Uu, respectively, where

UX = fx 2 Rn: kxk � mx <1g (8)

Uu = fu 2 R: juj � mu <1g (9)

andmx andmu are design parameters. It is known that the optimal
parameter vectors����k, k = 0; 1; � � � ; n+1, lie in some convex regions

M��� = f���k 2 Rh: k���kk � m��� g; k = 0; 1; � � � ; n+ 1 (10)

where the radiim��� are constants, and (11)–(13) are shown at the
bottom of the next page.

Assumption 2:The parameter vector���n+1 is chosen such that̂b is
bounded away from zero.

Lemma 1 [19]: Suppose that a matrix� 2 Rn�n is given. For every
symmetric positive definite matrixQ 2 Rn�n, the Lyapunov matrix
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equation�TP+P� = �Q has a unique solution forP = PT > 0
if and only if� is a Hurwitz matrix.

Lemma 2 [20]: If e(t) and _e(t) 2 Ln1, ande(t) 2 Ln
p for some

p 2 [1; 1), thenlimt!1 ke(t)k = 0.
Then, a vector of the state errors is defined as

e = r� x (14)

wherer = [r; _r; � � � ; r(n�1)]T is a reference signal vector, andr and
r(n) are bounded. Based on (5) and the certainty equivalence approach
[24], the control input can be written as

u =
�wT ���0 �wT [���1; ���2; � � � ; ���n]x� + r(n) + �T e

wT ���n+1
+ uo (15)

where� = [�1; �2; � � � ; �n]
T 2 Rn is a vector of the control param-

eters specified by the designer.
Based onAssumption 1, we differentiate (14) with respect to time,

and results are substituted by (5) and (15). After several mathematical
manipulations, we obtain

_e =�e+ be w
T (���0 � ����0)

+w
T [���1 � ����1; ���2 � ����2; � � � ; ���n � ����n]x�

+wT (���n+1 � ����n+1)u� + d� dh � dd

(16)

where

be = [0; 0; � � � ; 0; 1]T ;

� =

0 1 0 � � � 0

0 0 1 � � � 0

� � � � � � � � � � � � � � �

0 0 0 � � � 1

��1 ��2 ��3 � � � ��n

and

d = F̂ (x0; uo j���
�

0 )� F (x0; uo)

+ â
T (x0; uo j���

�

1; ���
�

2; � � � ; ���
�

n )� a
T (x0; uo) x�

+ b̂ (x0; uo j���
�

n+1 )� b(x0; uo) u� (17)

which denotes the modeling error. The control parameters
�1; �2; � � � ; �n are specified such that matrix� is Hurwitz as
required byLemma 1. To attenuate the effect caused by the unmodeled
dynamicsdh, disturbancedd, and modeling errord, and to reduce
the magnitude of the control inputu, a robust adaptive fuzzy-neural
control scheme, which incorporates the generalized projection update
law and the variable structure control method, needs to be developed.

III. GENERALIZED PROJECTIONUPDATE LAW AND ROBUST

ADAPTIVE CONTROLLER

To prevent parameter drift and to confine states of the systems into
the specified region, a generalized projection update law, which gener-

alizes both the switching-� adaptive law and the projection algorithm
modification [18], is derived to tune the adjustable parameter vector
���k. The generalized projection update law is then incoorperated into a
robust adaptive control scheme to construct a fuzzy-neural controller
so as to attenuate the effects caused by the unmodeled dynamics, dis-
turbance, and modeling error.

A. Generalized Projection Update Law

Let the generalized projection update law be as follows:
_���0 = �rJ0(���0)� ��0���0: (18)

First, consider the switching-� term of the generalized projection up-
date law_���0, where the switching parameter�0 is chosen as

�0 =

0; if (k���0k � m��� );

�
k���0k

m���

� 1 ; if (m��� < k���0k � 2m��� );

�; if (k���0k > 2m��� )

(19)

in which � is a strictly positive constant, and� is a design constant.
From (19), we know that�0 varies continuously from zero to� when
k���0k � km��� k . If ���0 is positive and large, then the second term of
the right-hand side of (18), i.e.,���0���0, becomes negative infinity
as���0 ! 1. If ���0 is negative and large, then the second term of the
right-hand side of (18) becomes positive infinity as���0 ! �1. There-
fore, the switching-� adaptive law can be used to tune the adjustable
parameters to prevent parameter drift [18].

Secondly, consider the first termrJ0 in (18). For the constrained
minimization problem

minimize J0(���0)

subject to k���0k � m��� (20)

the solution of (20) is given as

_���0 =

�rJ0(���0); if (k���0k < m���

or k���0k = m���

and�rTH0rJ0(���0) � 0);

� I�
rH0r

TH0

rTH0rH0

�rJ0(���0); if (k���0k = m���

and�rTH0rJ0(���0) > 0)

(21)

where
rJ0 gradient ofJ0;
H0 = k���0k �m��� = 0;
rH0 = ���0=k���0k.

Note that the solution (21) is obtained using the steepest descent
method and the gradient projection method [21].

To obtain a generalized form for both the switching-� adaptive law
and the projection algorithm modification, the switching-� term of
(18), i.e.,��0���0, where the switching parameter�0 is defined in (19),

����0 = arg min
��� 2M

sup
x 2U ; u 2U

F (x0; uo)� F̂(xo; uoj���0) (11)

����k = arg min
��� 2M

sup
x 2U ; u 2U

jak(x0; uo)� âk(x0; uoj���k)j ;

k =1; 2; � � � ; n (12)

����n+1 = arg min
��� 2M

sup
x 2U ; u 2U

b(x0; uo)� b̂(x0; uoj���n+1) :

(13)
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is brought into the projection algorithm modification in (21). Suppose
that there exists a cost functionJ0(���0), such that the gradient ofJ0 is

rJ0(���0) = �wbTe Pe: (22)

SincerH0 = ���0=k���0k andrJ0(���0) = �wbTe Pe, we conclude that
the generalized projection update law (18) for tuning the adjustable
parameter vector���0 is defined as

_���0 = ��wbTe Pe� ��0���0 (23)

where� > 0

�0 =

0; if (k���0k < m�

orm� � k���0k � �m�

and���T0wb
T
e Pe � 0);

�00
k���0k

m�
� (�� 1) ; if (m� � k���0k � �m�

and���T0wb
T
e Pe < 0)

(24)

� 2 [1; 2]; and

�00 = �
rTH0

�k���0krTH0rH0
rJ0(���0) = �

���T0wb
T
e Pe

k���0k2
:

(25)

Comparing (23) to (21), the generalized projection update law be-
comes the projection algorithm modification if� = 1. Similarly, com-
paring (23) to (18), then the generalized projection update law (23) be-
comes the switching-� adaptive law if�00 > 0,� = 2, and�0 = �00 as
k���0k > 2m� . Therefore, the projection algorithm modification and
the switching-� adaptive law are special cases of the generalized pro-
jection update law (23).

Following similar procedures, generalized projection update laws for
���k, k = 1; 2; � � � ; n+1, can be obtained. As will be demonstrated in
example 1, the generalized projection update law can be used to prevent
parameter drift.

Example 1: For simplicity, consider the second-order linear system
as

_x =
_x1
_x2

=
a1x2 + u1
a2x1 + u2

(26)

wherea1 anda2 are unknown parameters, andu1 andu2 are control
inputs. The control objective is to obtain the control lawsu1 andu2 and
the update laws for the unknown parametersa1 anda2 such thatx !
0 ast ! 1, under the constraint that all signals in the closed-loop
system are bounded. If the control law and the update law are chosen
as

u1
u2

=
�â1x2
�â2x1

(27)

and

_̂a =
_̂a1

_̂a2
=

�x1x2

�x2x1
(28)

where� is a strictly positive constant, then the stability of the system
(26) can be guaranteed by using the Lyapunov theory. Suppose that the
Lyapunov function is defined as

v =
1

2
x
T
x +

1

2�

2

i=1

(ai � âi)
2: (29)

Then it can be proved that_v � 0 so thatx ! 0 ast ! 1 according
to the Lyapunov theorem.

However, if a disturbance is taken into account, the results will be
quite different. Consider the actual system with the disturbance as

_x =
_x1

_x2
=

a1x2 + u1 + d

a2x1 + u2 + d
(30)

whered = d(t) is a bounded disturbance. Suppose thata1 = 1, a2 =
1, and let� = 1/14,â(0) = [1=2; 1=2]T , x(0) = [1; 1]T , and

d(t) = � 3
7 (1 + t)�(10=7)�(1 + t)�(3=7)+ 1

2 (1 + t)�(2=7) :

The solution of the actual system (30) by using the control law (27) and
the update law (28) can be obtained as

x(t) =
(1 + t)�(3=7)

(1 + t)�(3=7)
(31)

and

â(t) =

1
2 (1 + t)1=7

1
2
(1 + t)1=7

: (32)

With reference to (31),x(t) ! 0 ast ! 1. But as shown in (32),
â(t)! 1 ast ! 1. Hence, parameter drift occurs in this example,
which is similar to the problem reported in [18], except that [18] dis-
cusses a first order system. To solve this problem, the update law (28)
needs to be modified to prevent the parameterâ from drifting to in-
finity as time approaches infinity. We now have (28) modified by the
generalized projection update law (23) as

_̂a = [�x1x2; �x2x1]
T � ��ââ (33)

where

�â =

0; if (kâk < mâ

ormâ � kâk � �mâ

andâT [x1x2; x2x1]T � 0);

�0
â

kâk

mâ

� (�� 1) ; if (mâ � kâk � �mâ

andâT [x1x2; x2x1]T > 0)

(34)

and

�0
â
=
�âT [x1x2; x2x1]

T

kâk2
:

Fig. 1 illustrates the use of the generalized projection update law for
preventing parameter drift in example 1. As shown in Fig. 1, the projec-
tion of the generalized projection update law continuously varies from
zero to one in the interval [mâ; �mâ], wheremâ is an upper bound
for the unknown parametera. In fact, whenkâk � mâ, the magnitude
of the projection is continuously increasing in order to restrictkâk to
be away fromkak. Furthermore, from (33) and (34), it can be easily
found thatkâk has a upper bound�mâ. Although the aforementioned
system is linear, similar results can also be obtained for nonlinear sys-
tems by using the generalized projection update law (23).

B. Robust Adaptive Fuzzy-Neural Control Scheme

Since the control input (15) does not take the modeling errord, dis-
turbancedd, and unmodeled dynamicdh into account, parameter drift
of ��� may happen, andx(t) may not be confined into the specified re-
gions as required byAssumption 1. Therefore, a robust adaptive control
scheme, which incorporates the generalized projection update law and
a variable structure control method, is developed to attenuate the effects
caused by the modeling error, disturbance and unmodeled dynamic as-
sociated with the nonlinear system.

The switching surfaces is described by

s = Ce = 0 (35)
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Fig. 1. Illustration of the generalized projection update law for preventing
parameter.

whereC is a n � n matrix. To simplify the derivation process, we
assume thatC is ann�n identity matrix. The following results can be
generalized ifC is not an identity matrix. With reference to (15), the
control inputu is now modified as

u =
�wT ���0�w

T [���1; ���2; � � � ; ���n]x�+us+r(n)+�T s

wT ���n+1
+ uo (36)

whereus is a variable structure control term introduced into (15) to
compensate the errors caused by the modeling error, disturbance, and
unmodeled dynamics. Theus is chosen as

us = yf sign(e�) (37)

whereyf is a design constant, ande� is defined as

e� = s
T
Pbe: (38)

The objective is to chooseus so that the effect caused by the unmodeled
dynamics, modeling error, and disturbance can be attenuated.

With similar treatments to obtain (16), we differentiate (35) with
respect to time to obtain_s. After several simple substitutions by (5)
and (36), andAssumption 1, we have

_s =�s+ be w
T (���0 � ���

�

0)

+w
T [���1 � ���

�

1; ���2 � ���
�

2; � � � ; ���n � ���
�

n]x�

+wT (���n+1 � ���
�

n+1)u� � us + d̂ (39)

whered̂ = d�dh�dd. In order to obtain the tracking performance of
the robust adaptive controller, the following assumptions are required.

Assumption 3:The integrated effects of the modeling error, external
disturbance, and unmodeled dynamics are assumed to satisfykd̂k �
d̂u.

Assumption 4:The nonlinear system can be piecewise linearized.
Based on the above discussions, we can proceed to derive the

main theorem regarding the stability and tracking performance of the
closed-loop system by using the proposed approach.

Theorem 1: Consider the nonlinear system (1), which satisfiesAs-
sumptions 1–4. Suppose that the control input is chosen as (36), and
that the Lyapunov matrix equation satisfiesLemma 1as

�
T
P+P� = �Q (40)

and the update laws are defined as follows:

_���0 =��wbTe Pe� ��0���0 (41)
_���k =��wx�kb

T
e Pe� ��k���k; k = 1; 2; � � � ; n (42)

_���n+1 =��wu�b
T
e Pe� ��n+1���n+1 (43)

with reference to the generalized projection update law (23), where� >

0

�0 =

0; if (k���0k < m�

orm� � k���0k � �m�

and���T0wb
T
e Pe � 0)

�00
k���0k

m�

� (�� 1) ; if (m� � k���0k � �m�

and���T0wb
T
e Pe < 0

(44)

�k =

0; if (k���kk < m�

orm� � k���kk � �m�

and���Tkwx�kb
T
e Pe � 0)

�0k
k���kk

m�

� (�� 1) ; if (m� � k���kk � �m�

and���Tkwx�xb
T
e Pe < 0);

k = 1; 2; � � � ; n (45)

�n+1 =

0; if (k���n+1k < m�

orm� � k���n+1k

� �m�

and���Tn+1wu�b
T
e Pe � 0)

�0n+1
k���n+1k

m�

�(��1) ; if (m� � k���n+1k

� �m�

and���Tn+1wu�b
T
e Pe < 0)

(46)

� 2 [1; 2] is a scalar specified by the designer

�
0
0 =�

���T0wb
T
e Pe

k���0k2
(47)

�
0
k =�

���Tkwx�kb
T
e Pe

k���kk2
; k = 1; 2; � � � ; n (48)

and

�
0
n+1 =�

���Tn+1wu�b
T
e Pe

k���n+1k2
: (49)

Then the closed-loop system is stable, and tracking performance of the
closed-loop system satisfies

lim
t!1

ke(t)k = 0 (50)

if yf � d̂u.
Proof: Given in the Appendix.

With reference to (50),yf needs to be chosen to satisfyyf � d̂usuch
that the integrated error term̂d can be compensated. Care must be
taken, however, because a largeyf will result in an unacceptably high
gain.

In summary,���k, k = 0; 1; 2; � � � ; n; n + 1 is obtained from the
generalized projection update laws (41)–(43), with which the fuzzy-
neural controller can be constructed. A design algorithm that can be
computerized to obtain the control input for the nonlinear system is
listed below.

Design Algorithm:
[Step 1] Select control parameters�1; �2; � � � ; �n such that matrix�

is a Hurwitz matrix. Determinemx andm� , k = 0; 1; � � � ; n+1.
[Step 2] Choose an appropriateQ to solve the Lyapunov matrix equa-

tion (40).
[Step 3] Construct fuzzy sets forx0 anduo. Determine the nominal

states and nomial input[xT0 ; uo]
T .
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Fig. 2. (a) Membership functions forx . (b) Membership functions foru .

[Step 4] Choose an appropriateyf . Solve���k; k = 0; 1; 2; � � � ; n; n+
1 from the generalized projection update laws (41)–(43)Kg so as to
obtain the control law (36).

IV. I LLUSTRATIVE EXAMPLES

To show the effectiveness of the proposed approach, a real nonlinear
system of the inverted pendulum with disturbance is considered in the
following two examples. These examples serve to demonstrate that not
only is the effect caused by the unmodeled dynamics, disturbances, and
modeling error attenuated, but the parameter drift is prevented by using
the proposed approach. Furthermore, the magnitude of the derived con-
trol input by using the proposed approach is much smaller than that of
conventional methods [22], [25].

Example 2: Consider the inverted pendulum system, which is gov-
erned by the dynamic equations as follows:

_x =
_x1

_x2

=

x2

mlx22 sinx1 cosx1�(M+m)g sinx1�u cosx1

ml cos2 x1�
4

3
l(M+m)

+ dd

(51)

where
M mass of the cart;
m mass of the rod;
g = 9.8 m/s2 acceleration due to gravity;
l half length of the rod;
u control input.

Let x1 be the angle of the pendulum with respect to the vertical line.
For comparison purposes, it is assumed thatM = 1 kg, m =

0.1 kg, andl = 0.5 m, and the external disturbance is given as
dd = 0:3 sin(10t). Therefore, system response of the overall system
using the proposed adaptive fuzzy-neural controller can be simulated
and compared with that reported in [11]. By using the proposed
approach, the design parameters are chosen as� = 10,�1 = 1, �2 =
2, Q = diag[10; 10] mx = �/6, m� = 30, k = 0; 1; � � � ; n,
m� = 15, andyf = 20. The control objective is to derive the
control input so that the statex1 of the system tracks the reference
signal r = (�=30) sin(t). Note that the nominal states and nomial
inputs are chosen as[xT0 ; uo]

T = [x(t)T ; u(t)]T , and the initial
states of the system are assumed to bex = [�=30; 0]T . The initial
values of the vectors���k, k = 0; 1; � � � ; n, and���n+1 are randomly
selected in intervals [�2, 2] and [0.8,1], respectively. The membership

Fig. 3. (a) Tracking errors with the proposed controller and the method in [11].
(b) External disturbanced = 0:3 sin (10t).

functions ofx0 = [xo1; xo2]
T anduo(t) are shown in Fig. 2(a) and

(b), respectively.
Fig. 3(a) shows a comparison of the tracking errors of the closed-loop

system by using the proposed adaptive fuzzy-neural controller and the
method proposed in [11] when an external disturbance, as shown in
Fig. 3(b), is introduced. As shown in Fig. 3(a), the tracking error of the
closed-loop system by using the proposed controller is much smaller
compared to that of the controller proposed in [11], which fails to at-
tenuate the errors caused by the external disturbance. The proposed
approach not only attenuates the effects caused by the unmodeled dy-
namics, disturbances, and modeling errors, but also eliminates the chat-
tering of the control system, as clearly demonstrated in Fig. 3(a).

Example 3 [25]: Consider the system described by (51) again. The
system parameters and disturbance are assumed to be the same as those
reported in [22], [25], i.e.,M =10 kg,m = 1 kg, andl = 3 m, and the
external disturbance is assumed to be a square wave having an ampli-
tude of�0.05 with a period of 2�.

By using the proposed algorithm, the design parameters are chosen
as� = 10,�1 = 1,�2 = 2,Q = diag[10; 10]; mx = �=6,m� =30,
k = 0; 1; � � � ; n, m� = 15, andyf is chosen as 150. The control
objective is to derive the control law so that the statex1 of the nonlinear
system tracks the reference input signalr = (�=30) sin(t). The nom-
inal states and nomial input are chosen as[xT0 ; uo]

T = [x(t)T ; u(t)]T ,
and the initial states of the system are assumed to bex = [0:2; 0:2]T .

With reference to Fig. 4, it is shown that the tracking performance of
the proposed controller is almost the same as those reported in [22] and
[25]. However, time responses of the control inputu of these controllers
are quite different, as shown in Fig. 5, in which the largest magnitude
of the control inputu of the proposed controller is 400, compared to
837.67 of the controller proposed in [22]. As a matter of fact, the con-
troller proposed in [25] results in the largest magnitude of over 1400
for the control input. The significantly reduced magnitude of the con-
trol input by using the proposed approach demonstrates an advantage
in designing a controller for practical applications, because the smaller
the control input, the easier the implementation of the controller for a
real system.

V. CONCLUSIONS

In this paper, a novel robust adaptive fuzzy-neural control scheme
incorporating the generalized projection update law and variable struc-
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Fig. 4. Trajectories ofx with the proposed method and the conventional
methods.

Fig. 5. Time responses of control input with the proposed method and the
method in [22].

ture controller for nonlinear dynamical systems has been developed,
in which a fuzzy-neural model is used to approximate the nonlinear
system. By using the proposed generalized projection update law and
variable structure control method, the adaptive fuzzy-neural controller
can be obtained not only to attenuate the effects caused by the mod-
eling errors, disturbances, and unmodeled dynamics associated with the
nonlinear system, but also to reduce the magnitude of the control input
generally appreciated in designing controllers. Moreover, the widely
used projection algorithm modification and the switching-� adaptive
law are shown to be the special cases of the proposed generalized pro-
jection update law. To facilitate the design process, a design algorithm
that can be computerized to derive the adaptive fuzzy-neural controller
for nonlinear systems is also presented. Several illustrated examples
have shown that the robust adaptive fuzzy-neural controller proposed
in this paper can achieve a better control performance than the conven-
tional methods.

APPENDIX

Proof of Theorem 1:Consider the Lyapunov-like function candi-
date

v =
1

2
s
T
Ps+

1

2�
trace(��T ) (A.1)

where� = � � �� and�� = [����0; ���
�

1; � � � ; ���
�

n+1]. Differentiate
(A.1), and results are substituted by (39)–(43). We obtain

_v = � 1

2
s
T
Qs�

n+1

k=0

�k���
T
k (���k � ���

�

k) + s
T
Pbe(d̂� us): (A.2)

If the first condition of (44) is true, then�0 = 0. If k���0k � m� ,
thenk���0k � k����0k. If m� � k���0k � �m� and���T0wb

T
e Pe < 0,

then�0���T0 (���0 � ����0) � 0, becausek���0k � k����0k and�0 > 0. Fol-
lowing the same procedure, we can obtain similar results for���k and
k = 1; 2; � � � ; n+ 1. As a result, n+1

k=0
�k���

T
k (���k � ����k) � 0. Conse-

quently, we obtain

_v � � 1

2
s
T
Qs� sTPbeus + s

T
Pbe d̂: (A.3)

From (37) andAssumption 3, we have

_v � � 1

2
s
T
Qs� ksTPbek yf � d̂ : (A.4)

If we choose the design constant asyf � d̂u, then _v � 0, so that the
closed-loop system is stable. Also, (A.4) implies

_v � � 1

2
s
T
Qs (A.5)

if yf � d̂u. Equations (A.1) and (A.5) only guarantee thats(t) 2 L1,
and���k 2 L1, k = 1; 2; � � � ; n + 1, but not converged. From (35),
the boundedness ofs(t) implies the boundedness ofe(t). From (14),
the boundedness ofe(t) implies the boundedness ofx(t). Since the
nominal states are finite,x� is bounded. Based onAssumption 4and the
boundedness ofx� and���k, u� is bounded. Therefore,_s(t) is bounded,
i.e., _s(t) 2 L1. Integrating both sides of (A.5) yields

v(t)� v(0) � � 1

2
�min(QQQ)

t

0

ks(�)k2 d� (A.6)

where�min(Q) > 0 is the minimum eigenvalue ofQ. Whent ap-
proaches infinity, (A.6) becomes

1

0

ks(�)k2 d� �
v(0)� v(1)
1

2
�min(Q)

: (A.7)

Since the right-hand side of (A.7) is bounded, we haves 2 L2. As a
result,ks(t)k ! 0 ast!1 byLemma 2. Therefore, we conclude that
ke(t)k ! 0 ast!1 according to (35). This completes the proof.
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A Dual Neural Network for Kinematic Control of
Redundant Robot Manipulators

Youshen Xia and Jun Wang

Abstract—The inverse kinematics problem in robotics can be formulated
as a time-varying quadratic optimization problem. A new recurrent neural
network, called the dual network, is presented in this paper. The proposed
neural network is composed of a single layer of neurons, and the number
of neurons is equal to the dimensionality of the workspace. The proposed
dual network is proven to be globally exponentially stable. The proposed
dual network is also shown to be capable of asymptotic tracking for the
motion control of kinematically redundant manipulators.

Index Terms—Inverse kinematics, kinematically redundant manipula-
tors, recurrent neural networks.

I. INTRODUCTION

Kinematically redundant manipulators are those with more degree
of freedom than that required for position and orientation in a given
workspace. The use of kinematically redundant manipulators is ex-
pected to increase dramatically in the future because of their ability to
avoid the internal singularity configurations and obstacles and to opti-
mize dynamic performance [1], [2].

The forward kinematics problem in robotics is concerned with the
transformation of position and orientation information in a joint space
to a Cartesian space described by a forward kinematics equation

r(t) = f(�(t)) (1)

where
�(t) m-vector of joint variables;
r(t) n-vector of Cartesian variables;
f(�) continuous nonlinear function whose structure and parame-

ters are known for a given manipulator.
The inverse kinematics problem is to find the joint variables given the
desired positions and orientations of the end-effector through the in-
verse mapping of the forward kinematics (1)

�(t) = f
�1(r(t)): (2)

The inverse kinematics problem involves the existence and uniqueness
of a solution, and effectiveness and efficiency of solution methods. The
inverse kinematics problem is thus much more difficult to solve than
the forward kinematics problem for serial-link manipulators. The dif-
ficulties are compounded by the requirement of real-time solutions in
sensor-based robotic operations. Therefore, real-time solution proce-
dures to the inverse kinematics problem of redundant manipulators are
of importance in robotics.

The most direct way to solve (2) is to derive a closed-form solution
from (1). Unfortunately, obtaining a closed-form solution is difficult
for most manipulators due to their nonlinearity off(�). Moreover, the
solution is often not unique for kinematically redundant manipulators
due to their redundancy. Making use of the relation between joint ve-
locity _�(t) and Cartesian velocity_r(t) is a common indirect approach
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